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The spin-l/2 Heisenberg spin ladder with bond alternation 
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D e p m e n t  of Physics, University of Tokyo, 7-3-1 Hongo. Bunkyo-ku, Tokyo 113. Japan 

Received 14 March 1995 

Abstract. The spin-IR Heisenberg spin ladder model is studied by via a penurbatim 
ealculation and via bosonization. We mainly focus on the case of ferromagnetic interchain 
coupling in relation to the Haldane problem. Using the GKO coset construction of the conformal 
field Iheory, we bosonire the system I" terms of the SU(2) (spin) secfor and a residual king 
sector. ?he interchain intenction generically drives the system to slrong-coupling massive 
phases (the Haldane phase or the dimerized phase). However. it is suggested that the criticality 
appears for panicular choices of the couplings. 

1. Introduction 

Recently, spin ladder models have attracted a considerable interest. When the interchain 
coupling is antiferromagnetic, they are considered to be models of the so-called high-T, 
material [l-31 and they have been investigated by several authors [4-7]. Moreover, they 
are realized experimentally as (V0)zPzq or SrZCu406 [8 ,9 ] .  

On the other hand, ladders with the ferromagnetic interchain coupling are interesting in 
relation to the Haldane systems [lo, 111 (see [I21 for a review) and have been extensively 
studied both numerically 113, 141 and analytically [15, 161. That is, they smoothly 
interpolate between the fairly well established S = l j 2  chains and the S = 1 chain, which 
is far from completely settled, as the interchain coupling is varied. 

In the present paper, we mainly treat the following Hamiltonian 

x=C(szi-i . ~ u + ~ z i - i  . ~ z i ) +  ~'C(szj.szj+i + ~ z j . ~ z j + i )  

i 1 

where the alternating intrachain coupling J' and the interchain coupling J K  can vary from 
-CO to +CO. The spin-half operators [Si) and (Ti) independently form two S = 1/2 
alternating Heisenberg chains. The present model includes several interesting models as 
special cases. 

(1) The case JK -+ -CO, J'  = finite: the S = 1 alternating Heisenberg chain (shictly 
speaking, the Hamiltonian (1) reduces to the S = 1 chain sector and an infinitely massive 
sector). 

(2) The case JK = fixed, J' --f -w: the S = 1 Heisenberg spin ladder. 
(3) The case JK + -CO, J' --f -CO: the S = 2 Heisenberg antifemmagnet. 

1 E-mail: TOTSUKA@Lkyux.phys.s.u-lokyo.ac.jp. 
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Furthermore. analytic results are available for the following three limits. 

(i) The case JK = 0: the Hamiltonian reduces to two decoupled alternating Heiscnberg 
chains. The exact Bethe ansatz solution [I71 exists in the case without bond alternation 
(J’ = 1). For generic values of J‘. the S = 1/2 alternating chain is investigated by several 
authors [ le ,  191. 

(ii) The case J’ = 0: the model becomes an assembly of the decoupled four-site clusters 
and it can be trivially solved. 

(iii) The case JK + +CO: we have a problem of decoupled dimers. The ground state 
is simply given by the product of singlet dimers. 

It is well known [ 141 that the ferromagnetic limit (- JK >> I) of the model (1) without 
bond alternation (J’ = 1) has low-energy characteristics in common with the S = 1 
Heisenberg model; a finite excitation gap and short-ranged correlations. On the other hand, 
the model is massless when JK = 0 [20]. Therefore, at least one transition must occur in 
between. Up to now, however, the location of the critical point as well as its type has been 
controversial [13, 15, 161. It is one of the main purposes of the present paper to determine 
them and clarify the origin of the Haldane phase. In the following, we also look for other 
critical points and obtain a qualitative picture of the phase diagram. 

The present paper is organized as follows. In section 2, we perform the perturbation 
expansion around the two limiting cases: (i) the case JK + +CO (the dimer limit) and (ii) 
the case J’ = 0. The expressions of the dispersion relation for the elementary excitation 
and the excitation gap are obtained up to the second order. 

In order to investigate the neighborhood of the point ( J K  = 0, J’ = I ) ,  we adopt the 
non-Abelian bosonization [21,22] and the renormalization group calculation [23] in sections 
3 and 4. These sections are the main part of the present paper. 

In section 3, we map the two decoupled chains onto the continuum field theory. Then, 
we re-express it  in terms of the Ising field theory and the Wess-Zumino-Witten (WZW) 
model (21, 241 using the well known coset construction 125, 261. The resulting field theory 
is given by an interacting model of the Ising model and the level-2 SU(2) WZW model. 
The latter corresponds to the spin sector and is considered to be relevant for our analysis. 
This description is particularly suitable for investigating the case of the ferromagnctic J K .  

Then we treat the model by the renormalization group (RG) technique in section 4. To 
derive the 1-loop p-functions, the Kosterlitz-type renormalization scheme is used. Our result 
shows that the system flows to the strong-coupling regions in the infrared limit. Using the 
semiclassical treatment, we argue that the non-trivial strong-coupling fixed point exists for 
particular choices of the couplings ( J K ,  J‘). Within this type of approximation, it belongs 
to the universality class of the level-1 (not level-2!) SU(2) WZW model. The relation to 
another type of coupled chain is also discussed briefly. 

We summarize the results obtained in section 5. 

2. Perturbative evaluation of excitation spectra 

As was mentioned in section 1, OUT model ( I )  allows the perturbation expansion in the two 
limits: (i) JK + 00 and (ii) J’ = 0. In these limits, the ground state is given by a product 
of local singlet states. Hence a theorem concerning the excitation gap (Theorem 4.3 of 
[27]) can be applied in order to show that there exists a non-zero gap in some finite region 
around these limiting values of the coupling constants. 

It is well known that the LiebSchultz-Mattis theorem [28, 291 can be extended 
straightforwardly [30] to the XXZ spin ladder without bond alternation. This tells us that if 
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the infinite-volume ground state of the ladder with an odd number of legs is not degenerate 
then the excitation is inevitably gapless. Unfortunately, the theorem gives no meaningful 
statement for the relevant cases, e.g. ladders with an even number of legs. Therefore, in 
order to obtain a qualitative picture of the excitation spectrum, we perform a perturbative 
calculation around the limits above mentioned. Theorem 4.3 of I271 guarantees that these 
expansions indeed have finite convergence radii. 

Figure 1. Dispersion relalions o + ( k ) / I K  and o-(k)lJ~ obtained by the StCOn!&COUpfiIIg 
expansion in sechon 2. (a) JK = 5 and (b) JK = 10. The solid and dashed lines denote 
w+ and w-. respectively. 

First, we consider the type-(i) limit and expand the spectrum in 1 / J K  (hereafter, we call 
it the stmng-coupling expansion). In this limit, the ground state is a Uivial dimer singlet 
state with singlet valence bonds sitting on every rung. Obviously, the first excited states are 
obtained by replacing one of the valence bonds by a triplet bond. For a homogeneous case 
J' = 1, the dispersion relation of this type of excitation is calculated using the perturbation 
expansion [4, 311 and a kind of mean-field calculation [5]. Since the calculation is rather 
straightforward, we give only the result up to the second order in l/JK: 

1 1 
mi@)= JK l f - ( l +  J ' ) c o s k + - [ 3 + 3 ( J ' ) 2 - 2 J ' c o s 2 k ]  { 2-k 8 J i  
where o + ( k )  ( o - ( k ) )  denotes the upper (lower) branch of the spectrum and the wave number 
k runs half the Brillouin zone. We plot the dispersion w * ( k ) / J ~  in figure 1 for two values of 
J K .  Setting J' = 1, we reproduce the known result [4, 311, as is expected. Using equation 
(Z), the gap is given by the following formula: 

1 1 
A = &  1 - - ( 1 + J ' ) + - [ 3 + 3 ( J ' ) 2 - Z J ' ]  

~ J K  8 31: (3) 

Another expansion for the energy spectrum is possible around J' = 0 (we call it the 
weak-coupling expansion). When J'  = 0, the system reduces to an assembly of the 
decoupled four-site clusters. The ground state of each cluster is always given by the 
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following singlet state (singlet-A): 

K Totsuka and M Suuki  

The arrows stand for the singlet valence bonds including their orientation and the quantity 
a(&) is defined by 

LY(JK) = JK - I + J J ;  - JK + 1. 
Note that U(&) + -1/2 as JK -+ -m. It interpolates between the two strong-coupling 
limits ( J K  >> 1 and - J K  >> 1) smoothly. 

The first excited state for JK > 0 is different from that for JK < 0. When the interchain 
coupling JK is negative (i.e. ferromagnetic), the triplet state of the following type (triplet A )  

is the first excited state of a single cell, whereas it is replaced by another triplet state (triplet 
B)  for JK > 0: 

The thick lines denote triplet bonds which can take three values -1, 0, 1. Since a pair 
of S = 1/2 spins on each rung are symmetrized to form a single S = 1 spin in the 
JK + -CO limit, the excited state rriplet A can be identified as a weak-coupling analoguc 
of the excitation in the S = 1 dimer phase. On the other hand, the state triplet B is nothing 
but the elementary excitation considered in the strong-coupling expansion. The other sectors 
are always higher lying. 

We performed the expansion up to the first order in J' to obtain he spectrum 

for JK > 0, and 

for JK < 0. For J' > 0, the lowest excited state has momentum k = 0 and gives the gap 

for JK > 0, and 
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for JK < 0. The plot of it (figure 2) shows the peculiar behaviour of  the gap in the interchain 
coupling J K .  That is, it is almost flat for the ferromagnetic side JK .c 0, while it grows 
almost linearly in JK on the antiferromagnetic side. For JK < 0, we also performed the 
weak-coupling expansion up to second order. Since the resulting expression is lengthy, we 
give it in appendix A. When JK + -a, the gap vanishes at J' = 0.557, which is close 
to the Haldane-dimer transition point J'  = 0.595 * 0.010 of the S = 1 chain [32]. In 
figure 3, we also show the Haldanedimer transition line J '  = JL(JK)  evaluated using the 
second-order result. 

Expanding the right-hand side of (7) in l/JK, we reproduce the strong-coupling result 
(3) up to the first order in J'. Comparing the gaps obtained in these two ways (figure 4). 
we can see that they are almost the same for JK 2 3, although the regions of validity for 
the two expansions are quite different from each other. This implies that the crossover to 
the strong-coupling (JK >> 1)  behaviour occurs rather fast. Therefore, we may conclude 
that the excitation gap is non-vanishing for JK >> 1 (actually, JK 2 3) and for small J'. 

There is an obvious equivalence mapping on the ground-state phase diagram of our 
Hamiltonian (1): 

( J ' ,  JK) H ( I /J ' ,  J K / J ' ) .  (8) 

Using this symmetry, our observation is extended to the region J' >> 1. Thus the only 
remaining unsolved region is around (J ' ,  JK) = (LO). It does not allow the usual 
perturbation expansion. Hence, we use the mapping to the continuum field theory to analyse 
the model around this point in the next section. 

3. Mapping to field theory 

In the last section, we performed perturbation expansions from the two limits and found that 
there is always non-zero spin gap in the antiferromagnetic region J K  r 0 except for in the 
vicinity of the point (J' = 1, JK = 0). The region around this point (both ferromagnetic and 
antiferromagnetic) is not accessible by a simple perturbation. To complement the strong- 
or weak-coupling expansion, we adopt the bosonization technique based on the continuum 
field theory. 

Our tactics is as follows. First, we map the two decoupled Heisenberg chains onto two 
independent field theoretical models, and then introduce interactions between them which 
correspond to the interchain coupling and the bond alternation. In doing this, we use the 
non-Abelian bosonization 121, 221 based on the Wess-Zumino-Witten (WZW) conformal 
field theory, instead of the usual Abelian bosonization. A detailed account of this method 
can be found i n  [33]. 

It is well known 134-361 that the antiferromagnetic S = 1/2 Heisenberg chain (J' = 1) 
reduces to the level-I WZW model in the low-energy limit. This is also supported by the 
fact that the spinon S-matrix [37, 381 of the former coincides with the physical S-matrix 
[39] of the latter. In stead of a single free boson in the case of the Abelian bosonization, 
an SU(2) matrix field g is used in our formalism. Since we have two S = 1/2 chains at 
JK = 0, we introduce two independent WZW fields g and 5 correspondingly. The SU(2) 
matrix fields g and are governed by the following action [Zl. 241: 

d2x Tr (8,g aPg- l )  
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Weak-Coupling Expansion(1). 
I ' ' .  ' I " * ' I ,  " ' , I -  

5'=0.4 - 

-J, 

Weak-Coupling Expansion(I1) 

a _ _ _  I _ _  3 - 0.2 

(4 
J'=0.4 

11.11 

*I 
0.00 

-8. 

F w e  2. Dispersion relations a, and wq obtained by t he  weak-coupling expansion in J'. (a) 
o ( k )  for I' > 0 and (b) for J' c 0. Comparisons between the first-order mol& (dashed lines) 
and the second-order ones (solid lines) are shown in figure 21~).  
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0.00 

0 2 4 6 8 10 

-J, 
Figure 3. The transition line of !he Hafdmedimer rrmsition evaluated using the second-order 
result (solid line). The vansition line determined by another method (a variational calculation 
(531) is also plotted (dashed line). Note that an obvious symmetry mentioned in section 2 
guarantees the existence of another transition fine obtained by J' -+ IIJ ' ,  JK -+ JK 13'. 

J'=O.O 5'=0.2 

9 a 6  4 2 i l ~ ~  

0 
0 8 4 8 8 1 0  0 2 4 8 8 1 0  

J. Jx 

5'=0.4 J'=0.6 

6 

4 
" 

0 0 .  
0 2 4 6 8 1 0  0 2 4 6 8 1 0  

J. J. 

Figwe 4. Comparison of the gap obtained in two ways: (i) the strong-coupling expansion 
(dashed lines) and (ii) the weak-coupling expansion (solid lines). Note that the two results are 
almost [he same for JK 2 3. 

where the second integral is performed in the interior of the three-dimensional ball whose 
boundary is the two-dimensional space-time. The parameter k is called level and takes 
integral values. In our case, k is set equal to 1 or 2. Fork = 1, the matrix field g can 
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be simply expressed in terms of a single free boson. For example, the matrix elements are 
given by [41] 

K Totsuka and M Suzrtki 

The free boson field Q and its dual 7 are defined by Q = (&+QR)/~ and 7 = ( Q L - @ R ) / ~ ~  
where the chiral boson obeys ( Q ~ ( z ) & ( w ) )  = -In(z - w ) .  Note that the field g cannot be 
realized by a single free boson fork z 1. 

Using the fields g and g, the spin operator can be expressed as [22, 351 

si * JL + J R  +constant x 
Ti 

Tr(g0) 
JL + 2, +constant x ( - ly  Tr(T0) 

where the symbol 0 denotes the Pauli matrices. In the above equations, JL and J R  (2, 
and J R )  stand for the left and right SU(2) currents for the S(T)-chain, respectively, which 
satisfy the so-called level-] Kac-Moody algebra (see [41] for a review). Hereafter, we use 
the tilde to denote the quantities of the T-chain. The low-energy effective Hamiltonian for 
the S-chain is simply expressed as the following normal-ordered current bilinears 1221: 

where the quantity UF = r/2 corresponds to the 'light velocity' of the field-theory. The 
Hamiltonian for the T-chain is obtained similarly after replacing JRIL by J R / L .  In this 
representation, the translational symmetry of the original lattice problem turns into a discrete 
symmetry g -+ -g. In the following sections, we only consider the case where all 
parameters are set ejual for the two chains. Hence all the expressions are symmetric 
under g -+ E,  J + J .  

Taking the operator-product expansions S(i) . S(i + I) and T(i )  . T(i + I ) ,  we obtain 
the expression for the bond alternation 

Tr g for the S-chain Tr for the T-chain. (12) 
In terms of the two WZW models, the intrachain interaction can be written as 

The initial coupling A;') is positive, so it may be marginally irrelevant for JK = 0. The 
interchain interaction and the bond alternation reduce to the following (Lorentz-invariant) 
interactions 

~ ( J L  JR + JL JR) A3 [Tr(gu) . Tr(&)] (14) 

respectively. In our treatment, the spatial distance between S and T is negligible in 
the continuum limit. In order to preserve the renormalizability, we have to add another 
interaction 

as a counter term. The initial values of the coupling constants are given by 
A\') e 0 A, (') - - J K A:' - JK A?) = J'- 1 A'') - 0 

5 - '  

To analyse the infrared behaviour of the present system, we derive the renormalization 
group 6-function up to the 1-loop order. The calculation may be most easily done by 
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the renormalization procedure a la Kosterlitz (for an account of this method see 1421 and 
references cited therein). A similar calculation was made by Strong and Millis [44] for a set 
of interactions without the alternation Trg + Trz. Hence we omit the calculational detail 
(see appendix B for a comment on the calculation) and give only the result up to the 1-loop 
order: 

-- - 2n(A,)2 dAi 
d In L 
-- - 2x(A2)’ d 2  

d In L 
-- - A3 - nAl  A3 + ZxA2A3 + ah& d 3  

dInL 

The first and the second equations are decoupled from the others and can be integrated 
easily to yield 

*(O) 40) 
A2(L) = I hr (L) = 

I - ZHA?) ln(L/Lo) 1 - 2 x ~ $ ~ )  In(L/Lo) 
This implies that h )  is marginally relevant for the antiferromagnetic interchain coupling J K ,  
while it is marginally irrelevant for JK < 0. Therefore, the Al-interaction as well as the 
AI-interaction can be safely neglected in analysing the ferromagnetic regime JK < 0. 

The remaining equations are integrated numerically and the result shows that the system 
always flows to the strong-coupling (i.e. large values of A) region unless JK = 0 and J’ = 1. 

Thus we can conclude that the critical point of JK for the homogeneous ( J ’  = 1) case 
is given by 

J i  = O .  (18) 
The critical exponent v of the gap is easily read off from the third e uation of (17). 

implies that the gap emerges both for JK -+ O+ and JK 

Neglecting the quadratic terms, we can readily solve it to yield A3 = A, 9b ’ (LILO).  This 
0- with the critical exponent 

v = 1. (19) 
This implies that the transition at JK = 0 is of the second order. These results are in 
agreement with the recent numerical results [45]. Strictly speaking, however, the presence 
of marginal operators (AI and A2) modifies the purely power-like behaviour in (19). Field 
theoretical argument similar to the one used in [36] predicts that the mass gap opens as 

m(JK) - J K ( h J K ) l ’ Z .  (20) 
Recently, Fujimoto and Kawakami [46] applied a similar method to the Kondo lattice 
problem and obtained the result that the spin gap exhibits the essential singularity as 
JK + 0+, which is consistent with the numerical calculation [47]. However, they neglected 
the relevant h3,s-interactions which lead to the power-like behaviour observed above. We 
do not h o w  how to extract such an essentially singular behaviour in the presence of the 
relevant operators. 

From the above analysis, we found that infinitesimally small interactions around the 
point (J’ = 1, JK = 0) drive the system to the strong-coupling region. Combining this 
with the results obtained in section 2, we may expect the massive singlet phase to spread 
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over the antiferromagnetic region J‘ > 0, JK > 0. In this phase, S- and T-spins form local 
singlets (pairwise or clusterwise) and the analysis using the continuum field theory breaks 
down. 

However, the present analysis is insufficient for discussion of the ferromagnetic side, 
since a much more non-trivial phase diagram is expected from the known facts about 
S = 1 systems. In the strong-coupling regime, the original SU(2)s x SU(2)T-symmetry is 
reduced down to the diagonal SU(2). Correspondingly, the g x g-description based on the 
SU(2), x SU(2), symmetry is not a good starting point. Therefore, we adopt an alternative 
method based upon the diagonal SU(2) symmetry which is generated by the total spin 

It is well known [41] that if JLIR and Z L / ~  satisfy the level-] Kac-Moody algebra 
then the diagonal currents J$ = JL/R + J L ~  satisfy the level-2 one. There is a 
remarkable equivalence between two independent WZW models (k = 1) and a composite 
(k = 2 WZW) @ (Ising) model, which is known as the coset construction 125, 261. The 
above level-2 WZW model corresponds to the Kac-Moody algebra generated by the diagonal 
currents JLIR. Using this equivalence, we can rewrite our continuum model in the g x E- 
description into the one in the (k = 2 WZW) x (Ising) description. 

First, we begin by rewriting the interactions. It is well known [26] from the above 
quantum equivalence that bilinears of the characters of the level-I Kac-Moody algebra are 
expressed in terms of the characters of the level-2 algebra and the c = 1/2 Virasoro algebra: 

K Totsuka and A4 Suwki 

Siot + 7”. - 

diag 

(1) (1) - (2) Mr (2) VI, 

(1) (1) (2) VIr 

(1) (1) (2) v i  (2) Yo 

xj=OXj=O - Xj=oXh=O + Xj=l /ZXh=l /Z  

Xj=Ox,=l/Z Xj=1/2Xh=1/16 

xj=1/2Xj=1/2 = Xj=l/ZXh=O + x j = O x h = I / 2 .  

(21) 

These rules give a clue to how to decompose the interactions written via g and into those 
of the (Ising) @ (WZW)-picture. AI1 the necessary numerical coefficients are determined 
by requiring that the operator-product expansions should be consistent. After some algebra 
(see appendix B for a comment on the calculation), we obtain the desired results: 

Tr g(z. f) + Tr z ( z ,  Z) = J?Tr h(z, 2 )  u ( z ,  2) 

T r g ( z . 2 ) ~  +TrE(z,2)n =&Tr [h(z , i )ul  u ( z , i )  
Trg(z,Z)Trg(z, i )  =Tr@,=l(z , i )+E(z, i )  
T r g ( z , i ) n  .TrE(z,Z)u = Tr Q,=l(z,Z) - 3 & ( z , i )  

(22) 

where the king operators U (conformal weight h = 1/16) and E (h = 1/2) denote the 
magnetization and the energy operator, respectively. For the level-2 WZW model. there 
are three primary fields: 1 (identity), h (the WZW fundamental field), and Qjz1 (the spin-I 
primary field expressed as a 3 x 3matrix). They appear in  the right-hand side of (22), so 
that the transformation property under SU(2) of both sides may be consistent. 

Using them, our model is rewritten as 

S = sk=2WZW + Sisi, + ( A 3  4- As) d2x TrQj=l(z, Z) 

(23) 

A simple 

s 
+(-3A3+h5) d2x ~ ( ~ , 2 ) + h 4  dzx J?Trh(z , i )u(z , i ) .  J s 

Note that we have extracted the k = 2 WZW model non-perfurbatively. 
perturbation using two k = 1 WZW models will never yield the k = 2 one, 
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For non-zero values of JK, the second perturbation field E drives the king sector off- 
critical. Therefore, we can ignore the massive king sector in investigating the low-energy 
behaviour only. After replacing the king fields by their expectation values, we obtain the 
effective theory of our problem: 

S = S k = ~ w ~ w + o :  d2x TrOj=l(z,?.)+p dZx Trh(z,i). (a) 

Si =Si+Ti ~ J ~ + J ~ + c o n s t a n t x ( - l ) ’ T r [ h ~ ] .  (25) 

s s 
Using equations (10) and (22), the ‘fused’ spin operator is expressed as 

In the next section, we analyse the model in detail. 

4. Renormalization group and semiclassical treatment 

In Section 3, we have found that when the interchain coupling JK is turned on the king 
sector becomes massive. Thus the critical behaviour of the ladder model is governed by 
the remaining spin (SU(2)) sector, the level-2 SU(2) WZW model plus several interactions 

We calculate the p-function for the coupling constants 01 (the interchain coupling JK) 
and ,9 (bond alternation) following a similar method to that used in section 3. The resulting 
system of equations is given by 

(24). 

( $, gd?). The two points (b) and (c) are saddle points. The critical point Ji = 0 
and the exponent v = 1 can be derived also from these equations, as should be the case. 
The result of a numerical integration is shown in figure 5 .  It clearly shows that two quite 
different kinds of behaviour occur. In the shaded portion, the present system flows to the 
strong-coupling region with ,9 = 0; that is, the bond alternation is ‘healed’ in the low-energy 
limit. On the other hand, the flow starting from the other region except on the p = 0-line 
goes to the strongly dimerized (101 >> 1) phase. Therefore, we may expect that a transition 
occurs on the border of the two regions. Then a question arises: what is the ground state in 
these regions? To answer this, we adopt a semiclassical analysis first used by Affleck and 
Haldane [35] to predict the phase diagram of higher4 systems. 

To begin with, we parametrize the fundamental field h of the level-2 WZW model in 
terms of an angle @(q, x 2 )  (0 < @ c 2.n) and a unit vector P ( x l . x z ) :  

h(x1, x d  = exp (&%, x d c  .?((XI, xz) . (27) 

Note that the discrete symmetry h -+ -h corresponds to @ + -6, C + -P in  this 
parametrization, Then, we put this into the action of the k = 2 WZW model plus 
interactionst 

1 
a/d2x(Trh)Z+,9 s d*xTrh .  

t Taking the operator-product expansion (OPE), we can see that (Trh)’ actually corresponds to the spin-l primary 
field. However. we cannot a a p l  this equality litenlly, because some multipliwtive renormalization is necessiuy 
in obtaining the spin-I field from OPE of the h-fields. 
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Figure 5. The renormalization gmup flow obtained by integrating (26). In the shaded portion, 
the system is renormalized onto the 0 = 0 line. i.e. the bond alternation is healed. The three 
fixed points are plotted by B symbol ‘0’ .  

After some algebra, we obtain 

s[$. 3 = 8rr d2x [(a,$)’ + X I  - cos@)(a,a2] 

(28) 

where the first, second, and third lines come from the kinetic, the Wess-Zumino, and the 
potential terms, respectively. Following the standard procedure, we look for a uniform 
solution of @ which minimizes the potential term. As a result, we obtain the effective 
action governing the dynamics of the remaining e-field: 

s 1 
87r 

‘1 
+-2($ - sin@) d2x elrvp. (a,,$ x a$) 

+ /d2x p a  cos’ (g) + 28 cos (g)] 

S d F I  = 2 1 (1 -cos(@)) 2n /d’x (a@a2 

s (29) 
1 
8H +-2(($) -sin(@)) d’x 6,,$ (aw$ x 8°C) 

up to an unimportant constant term. It is important to note that this is simply the action of 
the O(3) nonlinear sigma model with the topological angle 

OtOp = 2(($) -sin($)). 

The result is summarized in figure 6. 
In the region indicated by ‘dimerized’, the solution is given by @ = 0 or 2% and the 

?-field becomes infinitely massive. The fluctuation around @ ~ ”  = ($) is massive as well. 
On the other hand, we obtain (6) = H on the half-line a > 0 and 8 = 0. In this case, Se, 
becomes the action of the O,,, = 0 nonlinear sigma model, which dynamically generates a 
mass in the low-energy limit. It is worth mentioning that this model is believed to be an 
effective model which describes the so-called Haldane systems [IO, 481. 
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Figure 6. The result of the semiclassical analysis. On the dashed lines, the system is described 
by the O(3) nonlinear sigma model with Oa,p = r. This cormponds to the HaldaneAimer 
transition. 

For other values of a and p satisfying the inequality -401 c B < 401, the potential 
is minimal when (@) = 2cos-'(-fJ/4a). We have estimated the value of fJ/a for which 
the topological angle becomes H. Our result is given by p/a  = rt1.62. Therefore, we 
have the O(3) nonlinear sigma model with Ofop = H as an effective action of the @ on 
the lines ,9 = kI.62a. In the region between these lines, the topological angle Ofop takes 
intermediate values between 0 and H. However, the renormalization group result suggests 
that in some region around 0 = 0 the system renormalizes onto the p = 0 line, on which 
O,,, is given by 0. 

Therefore, we may expect that (i) there are two transition lines on which the system is 
critical and that (ii) the region between them corresponds to the Haldane phase characterized 
by the O,.p = 0 sigma model. On the transition lines, the effective theory is given by 
O,,, = H model, which is believed to be equivalent to the level-I SU(2) WZW model [351 
[39] .  In a recent work [32], it was shown that the critical point of the S = 1 Haldane- 
dimer transition belongs to the universality class of the level-I SU(2) WZW model. Thus, 
combining this with the result of the perturbation expansion presented in section 2, we 
expect that the transition lines found near the point ( J ' ,  J K )  = ( 1 , O )  are connected to the 
S = I transition point. Along the line, the string order parameter defined on a ladder [I41 
will vanish with the exponent 116 [32] and the spin correlation functions decay as l / r .  

To conclude this section, a remark is in order about the so-called composite-spin model 
[49, 501. This model is a variation of the present ladder model where the rung interactions 
are replaced by the cross interactions. In their study of the model, S6lyom and Timonen 
[ S O ]  found that the system exhibits the same criticality as the integrable Takhtajan-Babujian 
model [51, 521 for some appropriate choice of the couplings. According to Affleck and 
Haldane [34, 351, this solvable model is described by the level-2 SU(2) WZW model in the 
low-energy limit. From our point of view, their choice of the coupling constants corresponds 
to the fine-tuning of the relevant couplings a and p.  
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Figure 7. The so-called Haldane phase originates at the 
decoupling point (JK = 0, J' = I )  and is expected to be connected to the S = 1 limit. The 
universality class of the Haldane-jimer transition is the same as that of the S = 1/2 Heisenberg 
model. 

A conjectured phase diagram. 

5. Summary and discussions 

In the preceding sections, we have investigated the ground-state phase diagram of the 
alternating ladder model (1). The results are summarized in a phase diagram (figure 7). 

From the perturbation calculations and the hosonization analysis performed in sections 
2, 3, and 4, it is suggested that the short-ranged singlet phase spreads over all the 
antiferromagnetic region (JK > 0). Both numerical results [4, 311 and the results of OUT 
perturbation expansions imply that the crossover to the strong-coupling (JK >> 1) region 
is rather fast. Therefore, we expect that the vertical dimer or singlet-A (see section 2) 
configuration dominates even for relatively small values of JK. Within a simple variational 
calculation, the singlet-A configuration always has an energy lower than the vertical-dimer 
one. 

In order to explore the ferromagnetic region ( J K  c 0), we have bosonized the system in 
terms of the level-2 WZW model and the king model. This kind of separation of degrees of 
freedom does not occur in the ordinary perturbative calculation based on two WZW models. 
That is, the appearance of the k = 2 model is non-perturbative. 

The king sector becomes massive for non-zero values of JK. The renormalization group 
flow of the remaining theory shows two types of limiting behaviour; one flow converges 
to the system with no bond alternation and the other goes to a trivial strong-coupling fixed 
point, where the system becomes strongly dimerized and the field theoretical description 
breaks down. Between these phases, a certain type of transition will occur. 

Using the semiclassical analysis, we have argued that there exist second-order transition 
lines which correspond to the level-1 WZW model, which belongs to the same universality 
class as the S = 1/2 Heisenberg chain. On the ferromagnetic side of them, a translationally 
invariant massive phase is realized and is connected to the Haldane phase of the S = 1 
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Heisenberg chain. In other words, the Haldane phase of the S = 1 chain ‘originates’ in 
the S = 1/2 Heisenberg point ( J ‘  = 1, J K  = 0). Note that it is the only point where the 
translational invariance is not broken in the S = 1/2 chain. It is not easy to discuss the 
string order in our treatment using the WZW model. However. a variational analysis [53] 
based on a ladder analogue of the VBS state suggests that the string order develops in this 
region (see figure 3). 

On the other hand, our semiclassical analysis tells us that a kind of dimerized phase, 
which breaks the translational invariance: h + -h. occurs outside the above region, as is 
expected from the perturbation expansion or the renormalization group analysis. 

Finally, we comment on the extension of our method to spin ladders with more than three 
legs. For simplicity, we consider the three-leg case below. We have SU(2)xSU(2)xSU(2) 
symmetry at the decoupling point JK = 0. Just as in the present two-leg case, we can 
decompose the product of three SU(2), (the suffix ‘1’ denotes the level) into SU(2), and a 
certain coset CFT whose central charge equals 6/S. In section 3, this residual coset CFT 
was given by the well known Ising model. If we assume that the residual sector becomes 
massive by introducing JK as in the two-leg case, we are left with the level-3 SU(2) WZW 
model with several interactions. A similar analysis to that in section 4 may be applied. In 
this case, a classical solution (@) = n corresponds to the Orop = IT sigma model (see (29)) 
which is expected to be massless [54, 391. Note that the solution (6) = n does not break 
the translational invariance by one site. Hence we expect that the gapless ground state is 
realized in the homogeneous chain (i.e. with no bond alternation). This is consistent with 
the observation of Timonen et al 1.551 and White et al [6] as well as the Haldane conjecture 
itself. 
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Appendix A. The second-order result of the weak-coupling expansion 

In section 2, we gave a result up to first order in J’. We improve it by calculating the 
second-order terms. 

As in section 2, the calculation is rather straightforward. However, we have to take into 
account all excited states of a cell in this case and this makes our calculation complex and 
tedious. After a long computation, we arrive at the final result 

I(nl~lIkJ)IZ I(nlt;lG.S.)12 
&’(k) = c 

n+miple,-A E~pier-~ - En 
- 

E m  - En 

- 
l+or+aZ 1+P+j3’ 

- - 

a2(1 + cosk) 2u(l + a) ( l  - cosk) + 1 - - 
i ~ - 2 J ~ + 3  01 - 2 5 ~  + 2 

3-cos2k - (I + cosk - 

(1+a)2(1+cosk)  3 u4 1 - + -  
(Y - 2 5 ~  + 1 2 1 + O r  +(u201 - JK + 2  
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As is described in section 2, the ground state 1G.S.) is given by the state singIetA and I(k)) 
denotes a plane-wave slate of triplet-A with a momentum k .  The parameter OI(JK) is given 
by 

~ ( J K )  = JK - 1 + J J i  - JK + 1. 

For JK + -CO, &(k) reduces to 

( A 3  

Combining this with the first-order result, we oblain the dispersion relation for the 
elementary excitation over the S = 1 dimerized chain: 

1 2  
2 3  

w(k)=---J‘Cosk+(J‘)’  

The gap appears at k = 0 and it vanishes for J‘ = 0.557 to this order. This is to be 
compared with the known critical values of the Haldane-dimer transition J‘ sj 0.6 [56, 321. 

Appendix B. A remark on the calculations of sections 3 and 4 

In this appendix, we give a brief comment on the calculation performed in sections 3 and 
4. In these sections, we frequently used the operator-product expansion (OPE) [57]. For 
example, the 1-loop /3-function is simply given by I421 

-- - (2 - Xk)& - H E CbAthj 
dla 

d l n L  i. j 

where the quantity X k  stands for the scaling dimension of the perturbing field @k and the 
numerical coefficients Ct. are defined by the following OPE: 

For example, the SU(2) currents in section 3 obey the following short-distance expansion: 

which is called the (level-k) Kac-Moody algebra 
The OPE coefficients {C;) are related to the three-point function (@1(~1)@2(~2)@3(~3)) 

of the primary fields. The latter is worked out in detail in 1401 for the SU(2) WZW model. 
Once we have the numerical coefficients Ci:;l”’ of the three-point functions, we readily obtain 
the OPE coefficients as 

where the parameters j,, j2, and j3 label the spins of the primary fields. The numerical 
factors {C3-P‘} are obtained by obtaining the necessary derivatives in equation (3.14) of 
[40]. Other necessary coefficients can be found in [58] .  

Note addcd in pmoJ After completion of this work. the author (KT) received a preprinl from Hi& 1591. He 
estimated a possible logarithmic correction (see equation (20)) to obtain the power of In JK as 0.4 & 0.07. This 
seem consistent with our result. 



The spin-lL2 Heisenberg spin ladder with bond alternation 6095 

References 

[I] Dagotto E, Riera J and Scalapino D 1992 Phyw. Rev. B 45 5744 
[21 Rice T M. Gopalan Sand Sigrist M 1993 Ewophys. Lefr, 23 445 
[31 Signst M. Rice T M and Zhang F C 1994 Phyr Rev. B 49 12058 
[4] Bames T, Dagono E, Rien J and Swanson E S 1993 Phyr. Rev. B 47 3196 
[5] Gopdm S, Rice T M and Sigrist M 1994 Phys Rev. B 49 8901 
[6] White S R. Naxk R M and Scalopino D J 1994 Phys. Rev. Lerr 73 886 
[71 Noack R M. White S R and Scalapino D J 1994 Phys. Rev. Len. 73 890 
[SI Johnston D C. Johnson J W. Gosham D P and Jacobson A J 1987 Phyr Rev. B 35 219 
[91 lshida K, I(ltaoka Y, Asayama K, Azuma M, H m i  2 and T h o  M 1994 1. Phys. Soc. Jupm 63 3222 

[IO] Haldane F D M 1983 Phys. Len. 93A 464 
[I I ]  Haldanr F D M 1983 Phyr. Rev. Lerr. 50 I153 
[U] AWeck I 1989 1. Phys.: C o d e m  Marre, 1 3047 
[I31 Hida K 1991 1. Phjx  Soc. l apm 60 1347 
[I41 WaWnabe H 1994 Phy,r. Rev. B 50 13442 
[I51 Hida K 1991 1. Phyr. Soc. Jupan 60 1939 
[I61 Watanabe H, Nomura K and Takada S 1993 1. Phys. Soc. 1upop.n 62 2845 
1171 Bethe H A 1931 2. Phys. 71 205 
1181 Cross M C and Fisher D S 1979 Phyr  Rev. B 19 402 
[I91 Hida K 1992 Phys. Rev. B 45 2207 
1201 des Cloizeaux J and Pemon J J 1962 Phys. Rev. 128 2131 
1211 Wiuen E 1984 Commun. Math. Phys. 92 455 
[221 Affleck I 1986Nucl. Phys. B 265 FSIS] 409 
[23] Amit D J 1989 Field Theory, :he Renr,rmolizuion Croup, and Crilicul Phenomena (Singapore: World 

1241 Knizhnik V G and Zzmolodchikov A B 1984 Nucl. Phys B 247 83 
[Z] Goddard P. Kent A and Olive D 1985 Phys. Leu. 152 88 
I261 Goddard P. Kent A and Olive D 1986 Commun. Murh. Phyr 103 105 
I271 Kennedy T and Tasaki H 1992 Commun. M a r h  Phys. 147 431 
[281 Lieb E. Schultz T and Mattis D J 1961 ANI.  Phys., NY 16 407 
I291 AWeck I and Lieb E 1986 Lerr. Murh. P1,y.v. 12 57 
1301 Affleck 1 1988 Phys. Rev. B 37 5186 
1311 Reigrotzki M. Tsunetsugu H and Rice T M 1994 J. Phys.: Cmdenr. M u i v r  6 9235 
[32] Touuka K, Nishiyama Y. Halano N md Suzuki M 1995 J. Phyr.: Condens. Mutter 7 4895 
[331 AfReck I 1989 Fields. Swings and Criiicol Phenomena ed E Brerin and J 7%"-Justm (Amsterdam: Elsevier 

I341 AWeck I 1985 Phys. Rev. Lett. 55 1355 
1351 AWeck I and Haldane F D M 1987 P h y .  Rev. B 36 5291 
[361 Ameck I, Gepner D. Schulz H I and Ziman T 1989 1. Phys. A: Muih. Gen. 22 511 
[37] Faddeev L D and Takhtjan L 1981 Phys. Len 85A 375 
[38] Faddeev L D and Takhrajan L 1984 1. Sow. M d t  24 241 
[39] Zmdodchikov A B and Zamolodehikov AI B 1992 Nucl, Phys. B 379 602 
[40] Zunalodchikov A B and Fateev V A 1986 Sov. 1. Nucl. Phys. 43 657 
[411 Goddanl P and Olive D 1986 Inr. 1. Mod Phys. 1 303 
[4?] Ludwig A W W 1987 Nrd Phys. B 285 97 
[431 Strong S P and Millis A J 1992 Phy.s Rev Len. 69 2419 
[GI Strong S P and Millis A 1 1994 Phys. Rev. 50 991 I 
1451 Nisbiyama Y. Hatano N and Suzulu M 1995 1 Phy.?. Soc. Japan at press 
[461 Fujimoto S and Kawak- N 1994 J.  Phys. Soc. Japan 63 4322 
[47] Tsunetsugu H. Hatsuga Y. Ueda K and Sigrist M 1992 Php.  Rev. B 46 3175 
1481 Ameck I 1985 Nucl. Phys. B 257 IFS141 397 
[49] S6lyom J and Timonen J 1986 Phys. Rev. B 34 487 
[501 S6lyom J and Timonen J 1989 Phyr. Rev. B 39 7003 
[511 Takhtajan L 1982 Phyr. Leu. 87A 479 
[52] Eabujian H M 1982 Phys. Lerr. 9OA 479 
[53] Totsuka K 1995 unpublished 
[54] Shankar R and Read N 1991 Nuel Phyr. B 336 457 

Scientific) 

Science) ch I O  



6096 

1551 Timanen 1. Sdlyom 1 and Parkinson J B 1991 1. Phys.: Condens. Maller 3 3343 
[56] Kato Y and Tanaka A 1994 J, Phys. Soc. Japan 63 1277 
[57] Belavin A A, Polyakov A M and Zvnolodchikov A B 1984 Nucl. P h y .  B 241 333 
[58] di Fmcerco P. Sdeur H and Zuber I B 1987 Nuel, Phyr. B 290 IFS201 527 
1591 Hida K 1995 3. Phys. Soc. Japun subdued 

K Totsuka and M Suzuki 


